Novel mutation in exon 56 of the dystrophin gene in a child with Duchenne muscular dystrophy.
نویسندگان
چکیده
Duchenne type muscular dystrophy (DMD) is an allelic X-linked recessive disorder caused by mutations in the gene encoding dystrophin. Genotype analysis has shown that deletion mutations account for approximately 65% of all cases, and 5-10% are duplications, while the remaining 30% of affected individuals may have smaller mutations, including point mutations, small deletions or small insertions. In this study, we present the case of a 4-year-old boy with typical clinical features of DMD, who developed normally until the age of 2. However, at age 3 he presented his first symptom, a tendency to fall, had difficulty in rising from the floor and in walking on his toes. At age 4 he had a waddling gait and could no longer climb stairs. A physical examination revealed proximal muscle weakness, calf hypertrophy, deep tendon hyporflexia and a positive Gower's sign. To identify the disease-causing gene in the proband, all coding regions (exons 1-79) of the dystrophin gene were PCR-amplified and sequenced. A novel duplication (c.8284dupA) in exon 56 of the dystrophin gene was identified, which was predicted to generate a frameshift mutation and create a premature termination codon (p.Ile2762Asnfs*10). This mutation was further confirmed by single-strand conformation polymorphism (SSCP) analysis, which revealed an extra band found in exon 56 of the dystrophin in the proband; however, this was not present in his family members or in the 100 matched normal controls. The data presented in this study may aid in expanding the spectrum of mutations causing DMD. To our knowledge, we demonstrate for the first time that a small duplication mutation can cause severe DMD.
منابع مشابه
P164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...
متن کاملDetection of the Duplication in Exons 56-63 of Duchenne Muscular Dystrophy Patients with MLPA
Background Duchenne Muscular Dystrophy (DMD) is a deadly X-linked recessive disorder. This genetic disorder affects 1 among 3,500-5,000 males in the world. The majority of the patients are male, due to the type of inheritance. It affects most of the skeletal, the respiratory, and cardiac muscles, causing these vital organs to contract and eventually mortality.<br...
متن کاملDystrophin Exon 29 Nonsense Mutations Cause a Variably Mild Phenotype
Background Nonsense mutations in the dystrophin gene usually result in a severe Duchenne muscular dystrophy phenotype. Findings We describe a 7-year-old boy with a rare pathogenic mutation in exon 29 c.3940C>T p.(Arg1314Ter) resulting in exon skipping, in turn rescuing the phenotype from a severe Duchenne type to a milder Becker muscular dystrophy type. No adults have been described with this...
متن کاملEvaluation of exon-skipping strategies for Duchenne muscular dystrophy utilizing dystrophin-deficient zebrafish
Duchenne muscular dystophy (DMD) is a severe muscle wasting disease caused by mutations in the dystrophin gene. By utilizing antisense oligonucleotides, splicing of the dystrophin transcript can be altered so that exons harbouring a mutation are excluded from the mature mRNA. Although this approach has been shown to be effective to restore partially functional dystrophin protein, the level of d...
متن کاملEmerging genetic therapies to treat Duchenne muscular dystrophy.
PURPOSE OF REVIEW Duchenne muscular dystrophy is a progressive muscle degenerative disease caused by dystrophin mutations. The purpose of this review is to highlight two emerging therapies designed to repair the primary genetic defect, called 'exon skipping' and 'nonsense codon suppression'. RECENT FINDINGS A drug, PTC124, was identified that suppresses nonsense codon translation termination....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of molecular medicine
دوره 32 5 شماره
صفحات -
تاریخ انتشار 2013